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In this article we develop an algorithm for capturing/intercepting a moving target based on
the sliding mode control method. First, we consider a ‘‘kinematic’’ model (in a sense) for

the capture/intercept problem and develop a method for that case. Then, we build on the
developed method to include general fully actuated vehicle dynamics for the pursuer agent.
The algorithm is robust with respect to the system uncertainties and additive disturbances.

Finally, we also provide a numerical simulation in order to illustrate the procedure.

1. Introduction

In recent years, there has been increasing attention and

effort by the controls community on importing biologi-

cal principles into the controls literature and developing

biologically inspired systems. These include developing

autonomous agents (either single or multiple) perform-

ing complex tasks. The motivation is that many biologi-

cal systems have designs very well adapted to their

environments (tuned by the evolutionary process for

millions of years), hence there might be useful principles

that engineers can learn and use in developing engineer-

ing systems. However, this is best accomplished within

the framework of systems perspective and its well estab-

lished, rigorous methods developed through years of

experience.
In nature, the survival of many species may critically

depend on their ability to capture a prey (a target) or

escape capture from a predator (a pursuer). In this

article we develop a method for intercepting/capturing

(or simply tracking) a moving target using potential

functions and the sliding mode control technique. The

sliding mode control method is an important technique

that has been used extensively for robot navigation
and control (we will not mention these here). It has a
variety of attractive properties, including its robustness
to system uncertainties and external disturbances and
its ability to reduce the problem of controller design to
a lower dimension with the choice of an appropriate
switching surface. See Utkin (1977), Decarlo et al.
(1988) and Young et al. (1999) and references therein
for a short introduction to sliding mode control
and Utkin (1992) for more detailed discussions.
Similarly, the articles in Drakunov (1992), Drakunov
and Utkin (1995) and Haskara et al. (1998) describe
how the sliding mode control method can be used for
developing state observers.

In Utkin et al. (1991) and Gulgner and Utkin (1993,

1995) the sliding mode control technique was used for

robot navigation and obstacle avoidance in an environ-

ment modeled with harmonic potentials. The strategies

there are based on forcing the motion of the robot

along the gradient of an artificial potential field, which

represents the environment. In particular, it was created

by placing positive charges at the obstacle positions and

negative charge at the goal point. Similarly, in Gazi

(2005) it was shown that this method can be used for

implementing aggregating swarms as well as formation

control. In this case, the potential function included or*Corresponding author. Email: vgazi@etu.edu.tr
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modeled also the interactions between the members of

the swarm (group). The results in Gazi (2005) constitute

a possible implementation method of earlier results

developed in Gazi and Passimo (2003, 2004a, b).
In Massoud and Bayoumi (1994) and Massoud (1995)

the authors describe a method for target intercepting

based on harmonic artificial potentials – an approach

that is a generalization of the harmonic potential fields
approach used for stationary targets (such as those

in Utkin et al. (1991) and Guldner and Utkin (1993,
1995)). They employ a time dependent potential field,

which is generated using the linear wave equation.

Despite some of their shortcomings, these articles consti-
tuted a motivation for this work.
This paper is organized as follows. In the next section

we discuss a method for intercepting a maneuvering
target using, in a sense, a ‘‘kinematic’’ model for the

pursuer (much like those considered in Massoud and

Bayoumi (1994) and Massoud (1995)). For this model
we develop an algorithm based on the sliding mode

control method. In x 3, we consider a general fully

actuated dynamic model of the pursuer (much like
those considered in Utkin et al. (1991), Guldner and

Utkin (1993, 1995) and Gazi (2005)) and build on the
results in x 2. The developed method is once more

based on the sliding mode control strategy. A key idea

for the method is to use a low pass filter (much like is
done in sliding mode observers (Drakunov 1992,

Drakunov and Utkin 1995, Haskara et al. 1998) in

order to smooth the switching term from the previous
stage of the controller design (i.e., the one in x 2).

In x 4 we provide illustrative numerical simulation
examples, and in x 5 we conclude with a few remarks.

2. Potential functions based ‘‘kinematic’’ model for

target tracking

In this section we consider the problem of a pursuer
tracking a target in an n-dimensional Euclidean space.

Let the position of the (possibly moving) target (to be

tracked or intercepted) be denoted by xt and the position
of the pursuer be denoted by xp. Moreover, assume that

the pursuer moves based on the equation

_xp ¼ gðxp, xtÞ, ð1Þ

where g :R2n
! R

n represents its motion dynamics. The
objective is to design gðxp, xtÞ such that

lim
t!1
kxp � xtk ¼ 0: ð2Þ

With this objective, we define Jðxp,xtÞ as the potential
of the distance between the target and the pursuer and
choose it such that

. it has its unique minimum at xp ¼ xt.

. it satisfies

rxpJðxp, xtÞ ¼ �rxtJðxp,xtÞ: ð3Þ

Note that the functions which are functions of kxp � xtk
satisfy this assumption. In fact, one possible function
which satisfies these requirements is

Jðxp, xtÞ ¼
1

2
kxp � xtk

2: ð4Þ

Potential functions have been used extensively for robot
navigation and control (Khatib 1986, Rimon and
Koditschek 1992). It might be possible to use a variety
of different potential functions here. For example, one
option could be the use of harmonic potentials such as
considered in Massoud and Bayoumi (1994) and
Massoud (1995). In the rest of this article we will use
the potential in (4) although other potentials are also
possible.

In order to be able to guarantee satisfaction of the
objective in (2), we need the potential Jð� , �Þ to be
a decreasing function of time. Its time derivative is
given by

_J ¼ rxpJ
>ðxp,xtÞ _xp þ rxtJ

>ðxp, xtÞ _xt:

Then, since Jðxp, xtÞ satisfies the condition in (3), its
derivative can be written as

_J ¼ rxpJ
>ðxp, xtÞð _xp � _xtÞ: ð5Þ

If xt and _xt were known, then one could choose

_xp ¼ gðxp, xtÞ ¼ _xt � �rxpJðxp, xtÞ, ð6Þ

for some constant �>0 leading to the equality

_J ¼ �� rxpJðxp, xtÞ
�� ��2:

However, assuming that both xt and _xt are known
is a strong (i.e., restrictive) assumption since usually
it is not possible for the pursuer to know both the
current position and velocity of the target. Below we
will consider two cases. First, we will assume that the
position xt is known and will develop the controller
accordingly. Later, we will show that it is possible to
design a tracking controller even if only the sign of
rxpJðxp, xtÞ is known.

Target tracking 1627
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Assumption 1: The position xt of the moving target is
known. Moreover, its velocity satisfies k _xtk � �t for
some known �t > 0.

The assumption that xt is known is not a weak assump-
tion. However, for now we will stick with this assump-
tion and later we will show how it can be relaxed to
the case in which only the sign of rxpJðxp, xtÞ
is known. The assumption that k _xtk � �t constitutes
a realistic assumption since any realistic agent has
a bounded velocity.
With Assumption 1 one can choose the pursuer

dynamics gðxp, xtÞ as

_xp ¼ ��rxpJðxp,xtÞ � � sign rxpJðxp, xtÞ
� �

, ð7Þ

where the constant parameters � and � are chosen as
� > 0 and � � �t and signð�Þ is the signum function
defined as

signð yÞ ¼
1 if y > 0,
0 if y ¼ 0,
�1 if y < 0,

8<
:

for a scalar y 2 R and operated elementwise for
a vector y 2 R

n, i.e., signðyÞ ¼ ½signðy1Þ, . . . , signðynÞ�
>.

Substituting the above choice of gðxp, xtÞ in the _J
equation in (5) one obtains

_J ¼ �� rxpJðxp, xtÞ
�� ��2

� � rxpJðxp, xtÞ
�� ��

1
�rxpJ

>ðxp, xtÞ _xt:

Then, from Assumption 1 the derivative of the potential
is bounded by

_J � �� rxpJðxp, xtÞ
�� ��2

� � rxpJðxp, xtÞ
�� ��

1
þ�t rxpJðxp, xtÞk1,

��
which, on the other hand, implies that

_J � �� rxpJðxp, xtÞ
�� ��2,

since we have � � �t by choice, recovering the above
result. (Note that above we explicitly used the 1-norm.
However, from the equivalence of norms the same in
equalities will hold for the other norms as well.
Therefore, for the rest of the paper we will use only
single notation for the norms.) This equation implies
that as time tends to infinity we have _J! 0 and
rxpJðxp, xtÞ ! 0. This, on the other hand, implies that
as t!1 we have kxp � xtk ! c ¼ constant, since
_J! 0. Moreover, we have the constant c¼ 0, since the
unique extremum of J in (4) (or basically

rxpJðxp, xtÞ ¼ 0) occurs at xp ¼ xt. Therefore, the
condition in (2) will be satisfied and the pursuer will
track the moving target.

The above controller requires knowledge of the
position of the target together with a bound on its
speed and with the help of a switching term guarantees
asymptotic tracking of the target. The assumption that
the position xt of the target is known allows for exact
calculation of rxpJðxp, xtÞ and makes it possible to
implement the above method. The surface
rxpJðxp, xtÞ ¼ 0 serves as a sliding manifold for the
system and leads to convergence with the use of high
enough controller gain to overcome the uncertainty in
the target’s speed. Intuitively, the second term in (7)
allows for the detection of changes in the direction of
motion of the target and helps redirect the pursuer in
that direction. It is possible to relax the assumption
that the position of the target is known and still track
the target by knowledge of only its direction of motion
(or basically the sign of rxpJðxp, xtÞ) and a bound on
its speed. Next we consider this case.

Assumption 2: The position xt of the moving target is
not known. However, sign rxpJðxp, xtÞ

� �
is known.

Moreover, the velocity of the target satisfies k _xtk � �t
for some known �t > 0.

For the case in which Assumption 2 holds one can just
choose the pursuer dynamics to be

_xp ¼ �� sign rxpJðxp, xtÞ
� �

, ð8Þ

where the constant parameter � is chosen as � > �t. For
example, if � ¼ ð�þ �tÞ for some constant � > 0, then
the derivative of the potential function in (5) satisfies

_J � �� rxpJðxp, xtÞ
�� ��,

guaranteeing once more eventual capture of the target
(by the same reasoning as in the above case).

The advantage of the dynamics in (7) over those in (8)
is that it is possible to achieve faster convergence with
a much smaller switching term. In other words, for the
case in which xt is not known the magnitude of the
switching term must be larger for the same convergence
speed.

One disadvantage of the above results is that the
dynamics in (7) and (8) do not represent the dynamics
of realistic vehicles. Therefore, the model considered in
this section serves essentially as a kinematic model for
pursuing of a moving target. For this reason, the
procedure here mostly serves as a proof of concept for
the tracking/intercepting behavior. In engineering
applications with agents with particular motion
dynamics one has to take into account these dynamics

1628 V. Gazi and R. Ordóñez
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in order to be able to develop control algorithms to
achieve the required behavior. In the next section we
discuss a control algorithm based on sliding mode
control theory which could be applied for agents with
general fully actuated dynamics. Moreover, it can be
extended to agents with different vehicle dynamics.

3. Sliding mode control for agents with vehicle dynamics

In the preceding section we showed that for a system
with a target (with position xt) and a pursuer (with
position xp), the pursuer will eventually catch the
target provided that its velocity vector _xp is chosen
such as to satisfy (7) or (8). In this section, we will
build on these results by considering a pursuer with
realistic vehicle dynamics. We will perform the analysis
based on (7); however, the results hold for the case
of (8) as well.
We consider a pursuer agent the dynamics of which

are described by the equation

MðxpÞ €xp þ fpðxp, _xpÞ ¼ up, ð9Þ

where xp 2 R
n is the position of the pursuer agent,

MðxpÞ 2 R
n�n is the mass or inertia matrix,

fpðxp, _xpÞ 2 R
n represents centripetal forces, Coriolis,

gravitational effects and additive disturbances, and
up 2 R

n represents the control inputs.
For the fpðxp, _xpÞ term in the vehicle dynamics equa-

tion we assume that

fpðxp, _xpÞ ¼ f kpðxp, _xpÞ þ f upðxp, _xpÞ,

where f kpð�, �Þ represents the known part and f upð�, �Þ
represents the unknown part. Also, we assume that for
the range of operating conditions the unknown part is
bounded. In other words, we assume that

k f upðxp, _xpÞk � �fp,

where �fp <1 is a known constant. (Note that although
here we assume that �fp is constant, the procedure will
work without modification for the case of known
bounded function �fpðtÞ as well.) Moreover, it is assumed
that the mass/inertia matrix is nonsingular and lower
and upper bounded by known bounds. In other words,
the matrix MðxpÞ satisfies

Mkyk2 � y>MðxpÞy � �Mkyk2,

where M > 0 and �M <1 are known and y 2 R
n is an

arbitrary vector. Note that all these assumptions are
standard and realistic.

Given the agent dynamics in (9), we would like to
choose (i.e., design) the control input up such that as
time progresses the pursuer catches the target. In other
words, we would like to choose up such that the
condition in (2) is satisfied. In order to achieve this
objective, there might be several different approaches,
one of which is to enforce the satisfaction of (7). In
other words, if the control input is designed to enforce
the velocity of the pursuer agent to satisfy (7), then in
the light of the discussion in the preceding section it
will guarantee the satisfaction of (2). In this section we
will take exactly that approach. To this end, once
more we will use the sliding mode control method.
The sliding mode control technique has the property
of reducing the motion (and the analysis) of the
dynamics of a system to a lower dimensional space,
which makes it very suitable for this application (since
we want to enforce the system dynamics to obey (7),
which constitutes only a part of the agent’s state). We
will follow a procedure similar to those in Utkin et al.
(1991), Guldner and Utkin (1993, 1995) and Gazi
(2005) for robot navigation, obstacle avoidance, and
swarm aggregations.

Define the n-dimensional sliding manifold for the
pursuer agent as

s ¼ _xp þ �rxpJðxp, xtÞ þ � sign rxpJðxp, xtÞ
� �

, ð10Þ

and note that once the agent reaches its sliding manifold
(i.e., once s¼ 0) we have

_xp ¼ ��rxpJðxp, xtÞ � � sign rxpJðxp, xtÞ
� �

,

which is exactly the motion equation in (7). Now, the
problem is to design the control input up such as to
enforce the occurrence of sliding mode. A sufficient
condition for sliding mode to occur is given
by DeCarlo et al. (1988)

s> _s < 0, ð11Þ

which also guarantees that the sliding manifold is
asymptotically reached (i.e., it guarantees that the reach-
ing conditions are satisfied). Later we will also show how
to choose a controller which will actually guarantee
finite time reaching of the sliding manifold.
Differentiating the sliding manifold equation we obtain

_s ¼ €xp þ
d

dt
�rxpJðxp,xtÞ
� �

þ
d

dt
� sign rxpJðxp, xtÞ

� �� �
:

Target tracking 1629
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One issue to note here is that the third term on the right
hand side of the above equation is unbounded at the
instances at which rxpJðxp, xtÞ changes sign and is zero
at the other time instants. However, for now, let us
assume that it is bounded by a known constant �Js
even at the switching instants. In other words, let us
temporarily assume that

d

dt
� sign rxpJðxp, xtÞ

� �� �����
���� � �Js

for a known 0 < �Js <1. Moreover, we assume that the
second term is also bounded, i.e.,

d

dt
�rxpJðxp, xtÞ
� �����

���� � �Jðxp, xtÞ

for some known 0 < �Jðxp, xtÞ <1. Note that this
assumption is not needed in the case in which we use
only the knowledge of the sign of rxpJðxp, xtÞ (and not
the position of xt). Moreover, it is not a strong
assumption and is satisfied by many potentials. In fact,
for the function in (4) it can be shown with a straight-
forward manipulation (see the appendix) that

d

dt
�rxpJðxp, xtÞ
� �����

���� � �k _xpk þ ��t: ð12Þ

With further manipulation this bound could be rewritten
in the form

d

dt
�rxpJðxp,xtÞ
� �����

���� � �2kxp � xtk þ �ðksk þ �þ �tÞ:

ð13Þ

Note that both expressions on the right hand sides of
equations (12) and (13) are computable and can serve
as the bound �Jðxp, xtÞ, although (12) is preferable if
k _xpk is available, because it is smaller. Note also that
once the sliding manifold is reached Jðxp, xtÞ is
decreasing and since the manifold is reached in a finite
time (as will be shown below) we have �Jðxp,xtÞ � �J for
some finite constant �J.
From the vehicle dynamics of the agents in (9) we

have

€xp ¼M�1ðxpÞ up � fpðxp, _xpÞ
� �

,

using which in the _s equation and substituting it in (11),
the condition for occurrence of sliding mode becomes

s>
h
M�1ðxpÞup �M�1ðxpÞfpðxp, _xpÞ:

þ
d

dt
�rxpJðxp, xtÞ
� �

þ
d

dt
� sign rxpJðxp, xtÞ

� �� �i
< 0:

If the above boundedness assumptions hold, then one
can choose the control input up such that s> _s < 0 is
satisfied. In particular, by choosing

up ¼ �u0 signðsÞ þ f kpðxp, _xpÞ, ð14Þ

we obtain

s> _s < �ksk
1

�M

� �
u0 �

1

M

� �
�fp � �Jðxp, xtÞ � �Js

� 	
:

Then, by choosing the gain u0 of control input as

u0 � �M
1

M
�fp þ �Jðxp, xtÞ þ �Js þ �

� �
,

for any � > 0, one can guarantee that

s> _s < ��ksk

is satisfied and that sliding mode occurs. In other words,
once the sliding manifold s¼ 0 is reached, the system
remains on that manifold for all time. Choose the
Lyapunov function as V ¼ 1

2 s
>s and note also that

the above inequality implies that _V � ��
ffiffiffiffi
V
p

: This,
on the other hand, in light of the comparison
principle (Khalil 1996), guarantees that the sliding
manifold is reached in a finite time bounded by

tmax ¼
2
ffiffiffiffiffiffiffiffiffiffi
Vð0Þ

p
�
¼

2ksð0Þk

�
:

Then, under ideal sliding mode the behavior described in
the preceding section for the ‘‘kinematic’’ model is
recovered implying that the tracking of the target is
achieved. In other words, the result can be described
as follows: The sliding mode surface s¼ 0 is reached in
finite time and then once it is reached the pursuer
asymptotically tracks the target. This is important
since it guarantees tracking of a moving target for
pursuers with general vehicle dynamics with system
uncertainties and additive disturbances. An important
advantage of the controller is that it does not require
the knowledge of the uncertainties (e.g., it does not
require the knowledge of the exact mass/inertia matrix
MðxpÞ of the pursuer robot) or the disturbances.
It needs only the bounds on them. These properties
constitute important advantages and are due to the
robustness properties of the sliding mode control
technique. Note also that in the above controller, we
utilized the known part f kpðxp, _xpÞ of the vehicle
dynamics. If there are not known parts, then this portion
of the controller can be set to zero.

1630 V. Gazi and R. Ordóñez



D
ow

nl
oa

de
d 

B
y:

 [G
az

i, 
V

.] 
A

t: 
07

:0
3 

20
 S

ep
te

m
be

r 2
00

7 

The above results crucially depend on the assumption
that the term d=dt � sign rxpJðxp, xtÞ

� �� �
is bounded.

However, this assumption does not hold since the
derivative of the signum function is unbounded on the
switching instances. To overcome this problem we use
an idea similar to that of the equivalent control
method and sliding mode observers (Utkin 1977,
DeCarlo et al. 1988, Drakunov 1992, Drakunov and
Utkin 1995, Haskara et al. 1998). Recall that the
equivalent control method allows the derivation of an
analytical controller assuming ideal sliding mode.
Moreover, it shows that the high frequency switching
controller has an ‘‘average’’ or an ‘‘effective’’ value
during sliding mode. Therefore, by passing the switching
signal through a low pass filter it is possible to extract
that value by cutting off the high frequency component.
Analogously, the � sign rxpJðxp, xtÞ

� �
term must have an

equivalent component and a high frequency component
during sliding mode. Denote its equivalent component
as � sign rxpJðxp, xtÞ

� �� �
eq
. Then, the bound �Js is the

value which satisfies

d

dt
� sign rxpJðxp, xtÞ

� �� �
eq

����
���� � �Js:

We would like to mention here just as a remark
that at ideal sliding mode when the pursuer
catches the target (i.e., s¼ 0 and rxpJðxp, xtÞ ¼ 0
the value of � sign rxpJðxp, xtÞ

� �
�eq

�
becomes

� sign rxpJðxp, xtÞ
� �

�eq ¼ � _xp ¼ _xt
�

, implying that the
switching term � sign rxpJðxp, xtÞ

� �
�

�
, in a sense, esti-

mates or approximates the unknown speed of the target.
For practical implementation, as in the sliding mode

observers, the value of � sign rxpJðxp, xtÞ
� �

�eq
�

can be
extracted by passing � sign rxpJðxp,xtÞ

� �
through an

appropriate low pass filter. With this in mind define

� _z ¼ �zþ � sign rxpJðxp, xtÞ
� �

,

where � is a small positive constant. In this system the
high frequency switching signal � sign rxpJðxp, xtÞ

� �
is

the input and z is the filtered output. Then, with
proper choice of the parameter �, which is the time
constant of the system and the inverse of the cutoff
frequency of the filter, at steady state we have

z � � sign rxpJðxp, xtÞ
� �� �

eq
:

This equation allows us to replace � sign rxpJðxp, xtÞ
� �

�
�

in the sliding manifold equation in (10) with z.
In other words, we redefine the sliding manifold as

snew ¼ _xp þ �rxpJðxp, xtÞ þ z,

and since z is bounded the method derived above could
be implemented for this new sliding manifold. In order
to be consistent with the derivation above, we assume
that the bound on z is the constant �Js used above.
In other words, we have

k _zk ¼
1

�
�zþ � sign rxpJðxp, xtÞ

� �� �����
���� � 2�

�
, ð15Þ

which holds since kzk � �. Then, the controller
in (14) with s replaced with snew, i.e.,

up ¼ �u0 signðsnewÞ þ f kpðxp, _xpÞ,

with gain u0 chosen as before and �Js ¼
�
ð2�=�Þ,

guarantees the occurrence of sliding mode at the new
(redefined) manifold snew in a finite time.

The idea of utilizing z instead of the switching term
� sign rxpJðxp,xtÞ

� �
in the sliding manifold equation is

a key idea of this article, which makes the algorithm
implementable. However, it comes also at a price,
since snew is not exactly equal to s. In other words, at
the new sliding manifold snew ¼ 0 the motion of the
pursuer agent becomes

_xp ¼ ��rxpJðxp, xtÞ � z

¼ ��rxpJðxp, xtÞ � � sign rxpJðxp, xtÞ
� �

þ � _z:

For this new _xp one can show that in the worst case the
time derivative of the potential function Jðxp,xtÞ is
bounded by

_J � �� rxpJðxp, xtÞ
�� �� rxpJðxp, xtÞ

�� ��� �þ �t
�

� 	

which guarantees that Jðxp, xtÞ decreases for

rxpJðxp, xtÞ
�� �� > �þ �t

�

which for the given potential in (4) means

xp � xt
�� �� > �þ �t

�
: ð16Þ

In other words, with the introduction of the filter one
can guarantee only bounded tracking of the target.
Still, however, by choosing the parameter � high
enough the tracking error can be made as small as
desired. In particular, for a desired bound of � on the
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tracking error, by choosing

� ¼
2�

�

one can guarantee that as t!1 we have

lim
t!1

xp � xt
�� �� � �:

This completes the development of the sliding mode
controller. Note that the controller consists of two
stages (as is the case of all sliding mode controllers).
The first stage is the definition of an appropriate sliding
manifold. This was performed in the preceding section.

In other words, while discussing the ‘‘kinematic’’
model for the pursuer we also defined a sliding surface
for the dynamic model of this section. The second
stage of the sliding mode control design is to enforce
occurrence of sliding mode on the designed surface
and this was discussed in this section. As a difference
from usual sliding surfaces, the sliding manifold consid-
ered here contains a switching term with unbounded first
derivative. This difficulty was overcome by using ideas
from the equivalent control method and the sliding
mode observers. In particular, for practical implementa-
tion by redefining the manifold and replacing the
switching term with its smooth steady state equivalent,
obtained by and appropriate lowpass filet, one can
achieve bounded tracking with user defined arbitrary
accuracy. In the next section we will provide a few
simulation examples illustrating the behavior of the
system.

4. Simulation examples

In this section some numerical simulation examples will
be presented in order to illustrate the effectiveness of the
sliding mode controller for intercepting moving targets.
For ease of plotting we use only n¼ 2; however, qualita-
tively the results will be the same for higher dimensions.
First, we will provide a few simulations for the
‘‘kinematic’’ model and after that we will consider
agents (robots) with point mass dynamics with unknown
mass and unknown but bounded additive disturbances.
In all the simulations below we used � ¼ 0:01 and
� ¼ 2:0 as the controller parameters.

Figure 1 shows a simulation for the case with the
‘‘kinematic’’ model. Initially the target is located at the
position ½1, 1� in the plane, whereas the pursuer is
located at the origin. The target tries to escape following
a sinusoidal type of trajectory, according to the
dynamics

_xt1 ¼ 0:05þ 0:1 sinð2tÞ

_xt2 ¼ 1:9 sinð0:5tÞ:

As one can see that the pursuer catches up with the
target in a short period of time and follows it after
that. Similar results are obtained for other trajectories
of the target such as trajectory generated with a
random velocity. Figure 2 shows the distance between
the target and the pursuer. We believe that the fact
that the distance between the two does not vanish is
due to the chattering effects (which arise from the
numerical errors in Matlab in this case due to the
stiffness of the function – here we used the signum
function in the simulation). Note that the chattering
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Figure 1. The trajectories of the target and the pursuer (the
kinematic model case).
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Figure 2. The distance between the target and the pursuer

(the kinematic model case).
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effect can also be seen from figure 1, where the pursuer

trajectory crosses back and forth the trajectory of the

target. These are consistent with the theoretical
expectation discussed in the preceding sections. Note

that there are ways to reduce or eliminate

chattering (Bondarev et al. 1985). However, these are

outside the scope of this article.
Next, consider agents (robots) with point mass

dynamics with unknown mass and unknown but

bounded additive disturbances. In other words, we

consider the model

Mp €xp þ fpðxp, _xpÞ ¼ up,

where M �Mp � �M is the unknown mass and
fpðxp, _xpÞ ¼ sinð0:2tÞ is the uncertainty in the system.
Without loss of generality we assume unity mass
Mp ¼ 1 for the agent. In the simulations below as
controller parameters we choose M ¼ 0:5 and
�M ¼ 1:5, �fp ¼ 1 and � ¼ 1. Moreover, we also replaced
the signðsnewÞ term in the controller with the term
tanhð�snewÞ (which also contributes to the tracking
error in the simulation), with � ¼ 10. This smooths the
control action and is often used instead of the discontin-
uous signum function in sliding mode control applica-
tions. The parameter � is a smoothness parameter
which determines the slope of the curve around zero.

Figure 3 shows the trajectories for the target and the
pursuer for the case with the above dynamic model
with the same initial positions as the previous case and
pursuer with zero initial velocity. Here, we have �J
computed according to (13), and �Js ¼ 8 (found by
evaluating equation (15)) for the bounds on
kðd=dtÞ½�rxpJðxp, xtÞ�k and _z, respectively. As one can
easily see from the figure the trajectories for this case
are very similar to those in figure 1 which were obtained
for the kinematic model. Figure 4 shows the distance
between the target and the pursuer. It is observed that
for this case the error is larger and approaches zero
slower compared to the earlier case. This is due to the
fact that the lowpass filter used was not adequate and
is unable to extract the actual ‘‘average’’ value of its
input. For this case we used a filter with time constant
� ¼ 0:5. Note the interesting fact that the actual
tracking performance of the method is much better
than predicted by the theory. Indeed, if we evaluate
the expected bound (16) for the steady-state distance
between pursuer and target, we obtain 400, while the
actual bound at steady state in figure 4 is about 0.06!
Clearly, the theoretical bound is so large because, in
choosing �¼ 0.01, a relatively small number, we attempt
to reduce the control energy used. This bound does not
depend on the choice for �; therefore, we can expect a
performance degradation with increasing values of �,
but no worse than the bound given in (16).
Consequently, if we choose, for instance, �¼ 10,
then the tracking performance improves significantly,
regardless of �, with a theoretical tracking error of at
most 0.4 and actual/practical tracking error—not
shown here—of at most 0.0015 in steady-state.

Figures 5 and 6 show the results for the case in which
the filter parameter was decreased to � ¼ 0:1. Here,
we set �Js ¼ 40 from (15). One can easily see that for
this case the error is much smaller compared to the
earlier case – it is about 0.01 at steady state, which is
six times less than the previous case. This is because
now the filter works properly and therefore we have
snew � s and the result for the kinematic case is
recovered.
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Figure 3. The trajectories of the target and the pursuer for
the case with � ¼ 0:5 (the dynamic model case).
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Figure 4. The distance between the target and the pursuer

for the case with � ¼ 0:5 (the dynamic model case).
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Finally, in figures 7 and 8 we provide a simulation

result for a case not discussed in the preceding sections.

There, we included an obstacle at the position ½5, 5� and

modeled it as a Gaussian potential centered at that point

with magnitude 50 and spread 2. Moreover, we included

this potential in the potential J for the inter-individual

distance between the target and the pursuer. It was

assumed that the target this time is located at the

position ½10, 10�. Here, we set �¼ 0.1 as before and

keep the same bounds �J and �Js. As one can easily see

from the figure, the pursuer avoids the obstacle and is

in the end able to catch the target (which moves in a

manner similar to before). This time it takes longer for

the pursuer to intercept the target (we run the simulation
for 300 seconds, whereas in the previous cases we run it
only for 60 seconds), which is expected. This shows the
potential of the algorithm: it might be possible to use
it for capturing/intercepting moving targets in a
structured environment. However, this still needs to be
carefully considered.

5. Concluding remarks

In this article, we presented a procedure based on
sliding mode control theory which can be used

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

xt1
 and xp1

x t
2 a

nd
 x

p 2
Target
Pursuer

Figure 5. The trajectories of the the target and the pursuer
for the case with � ¼ 0:1 (the dynamic model case).
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Figure 6. The distance between the target and the pursuer
for the case with � ¼ 0:1 (the dynamic model case).
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Figure 7. The trajectories of the target and the pursuer for
the case with an obstacle at ½5, 5� (the dynamic model case).
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Figure 8. The distance between the target and the pursuer

for the case with an obstacle at ½5, 5� (the dynamic model case).
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D
ow

nl
oa

de
d 

B
y:

 [G
az

i, 
V

.] 
A

t: 
07

:0
3 

20
 S

ep
te

m
be

r 2
00

7 

to intercept/capture a moving target. One of the
advantages of the method is that it is robust with respect
to disturbances and system uncertainties. The algorithm
is also promising from the perspective that it might be
possible to use it for intercept/capture of targets
moving in a structured environment. Moreover, it may
be possible to use a similar method for capturing/
enclosing a moving target by making group formations
by multiple pursuers. Here we did not impose velocity
constraints on the pursuer. The performance of the algo-
rithm under such constraints can also be investigated in
future work.
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Appendix. Derivation of �Jðxp, xtÞ

Given the potential function in (4) its gradient at xp is
given by

rxpJðxp, xtÞ ¼ ðxp � xtÞ:

Then, the bound on its derivative with respect to time
can be calculated as

d

dt
�rxpJðxp, xtÞ

����
���� ¼ d

dt
�ðxp � xtÞ

����
����

¼ �ð _xp � _xtÞ
�� ��
� �k _xpk þ ��t: ð17Þ

Note that this bound is computable and can be used as
�Jðxp, xtÞ. Another possible bound could be obtained by
using the equality

_xp ¼ s� �rxpJðxp, xtÞ � � sign rxpJðxp, xtÞ
� �

,

in the above equation and manipulating further.
Basically, from the above equality we have

k _xpk � ksk þ �krxpJðxp, xtÞk þ �

substituting which in (17) one obtains

d

dt
�rxpJðxp, xtÞ
� �����

���� � �2kxp � xtk þ �ðksk þ �þ �tÞ,

which is also a computable bound.
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