
Camera calibration and
3-D reconstruction

Julien FAUCHER

Project supervisor

Manuel BOISSENIN

Project coordinator Head of Lab
Bala AMAVASAI Jon R. TRAVIS

June 30, 2006

Contents

I Introduction 5

1 Motivation 6

2 Context, background 8

2.1 The MMVL lab . 8
2.2 The MIMAS library . 8

3 Equipments 10

3.1 Hardware equipment . 10
3.2 Software . 10

4 Work accomplished 12

4.1 Subject research . 12
4.2 Test of different methods . 12

4.2.1 COPOS . 13
4.2.2 ArcheoViz . 13

4.3 Camera calibration . 13
4.4 3-D reconstruction . 14

II Camera Calibration 16

5 Introduction 17

6 Algorithm 19

7 Implementation in MIMAS 22

7.1 Software design . 22
7.2 Presentation of the classes . 22
7.3 Extra functionality added to MIMAS 23

7.3.1 Cholesky decomposition 23
7.3.2 Determinant of a matrix 23

1

CONTENTS 2

7.3.3 Levenberg-Marquardt algorithm 23

8 The corner detection algorithm 25

8.1 Introduction . 25
8.2 Choice of the algorithm . 25

8.2.1 The template based algorithm 26
8.2.2 The sub-pixel detection 28
8.2.3 The final algorithm . 28

9 Tests and validation 30

9.1 Test of the corner detection algorithm 30
9.2 Test of the convergence of the algorithm 30

III 3D reconstruction 35

10 Laser calibration 37

10.1 Theory . 37
10.2 Overview of the method . 38
10.3 Detailed description . 38
10.4 Implementation with MIMAS 40

10.4.1 Detection of the laser line 40
10.4.2 Equipment . 40

11 The 3-D reconstruction 41

11.1 Equipment . 41
11.2 Method of 3-D reconstruction 42
11.3 Detection of the line and computation of the 3-D points 42

11.3.1 Laser line detection . 42
11.3.2 3-D points computation 42

11.4 Utilisation of the rotating platform 43
11.4.1 Platform calibration 44
11.4.2 Rotation formula . 44
11.4.3 The 3-D reconstruction 45

12 Possible extensions 47

12.1 Camera calibration . 47
12.2 3-D reconstruction . 48

IV Appendix 49

List of Figures

4.1 The laser and camera stand 15

5.1 The pinhole camera imaging model 17

7.1 Class diagram . 22

8.1 The black and white template, for the upper-left corner 26
8.2 The final template, with white = 150 and black = 50 27
8.3 The Blais and Rioux detector 28

9.1 The ax parameter . 31
9.2 The ay parameter . 32
9.3 The fx parameter . 32
9.4 The fy parameter . 33
9.5 The skew parameter . 33
9.6 The distortion parameters . 34

10.1 The laser plane . 37
10.2 The camera frame . 38

11.1 The full equipment . 41
11.2 The 3-D reconstruction . 42

3

Acknowledgments

First of all I would like to thank Dr Jon R. Travis and Dr Bala Amavasai

for giving me the opportunity and all the facilities to carry out this project
to a succeful completion.

I would like to thank Mr Manuel Boissenin who supervised me for his
commitment with me and his numerous pieces of advice to help me passing
through the problems I encountered.

Mr Arul N. Selvan helped me on some parts of my project, as well as
providing me some useful ideas to go further.

Thanks too to Mr Kim Chuan Lim for his technical help all along the
year, and for the conception of the platform.

I am deeply in debt to Mr Jan Wedekind for his programming support
and his patience in debugging some parts of my code.

4

Part I

Introduction

5

Chapter 1

Motivation

Computer Vision is the study and application of methods which allow com-
puters to extract useful information from image content. In this domain, 3-D
reconstruction is a major topic.

Cheap techniques to acquire 3-D representation of objects are desirable.
For instance 3-D from photogrammetry (or stereoscopy) can do a 3-D re-
construction of an object using only camera(s), but the main problem of
these techniques is that patches of uniform colours cannot be put in corre-
spondence, and so precise geometric information of these regions cannot be
extracted.

There are also other methods using ultrasounds or laser, but at the ex-
pense of sophisticated techniques that have the inconvenience to be both
expensive and long to be mastered. Thus, to be accessible the experience
and the learning of these techniques have to be embedded in reusable soft-
ware components.

The large majority of 3-D reconstruction techniques use a camera and
need common algorithmic components which can be grouped under the name
of Camera Calibration. Camera calibration is a widely and well understood
set of techniques that allows to get the intrinsic configuration of the camera.
However there is not yet a satisfying - for our purpose - implementation of
the technique.

In many ways, it can be considered that this work has already been carried
out with several implementations. Indeed, there is a good software imple-
mentation of the camera calibration for Matlab, but Matlab is unfortunately
a commercial software. There is also another free implementation in OpenCV
[10] but the code is not objected oriented, which make the learning cost to
understand the library quite high and the possibility to improve the work
quite low. An alternative library is Gandalf [11], in which camera calibra-

6

CHAPTER 1. MOTIVATION 7

tion source code is easier to understand, but which uses the calculus facilities
of Gandalf which are different from those of MIMAS [9]. For these reasons it
was decided that we implement our own camera calibration algorithm which
is needed in MIMAS [9].

In spite of the knowledge available on the subject, the steps involved to
implement the technique are quite numerous and required good programming
basis. It took five months of serious work to be able to reach the stage of
being able to accurately calibrate a camera. This work has been made in
such a way that it is easily re-usable by the community and it should take
now only a few hours to be able to create a personalised software to calibrate
a camera using the developed library.

To demonstrate and validate the implementation a set up to recover the
3-D geometry of an object using a laser line has also been developed. There
are already a few projects for 3-D reconstruction with a laser line (such as
COPOS [18]) but their approach is not as flexible as ours and the precision
is not as good, since their method depends for instance on how well you tune
the position of your laser.

In our method, the 3-D reconstruction is based on a laser line, projected
on the object of interest. The scanning of the object can either be done by a
rotating or a translating relatively to the laser plane to get the 3-D points.

The developed project is available on-line, is open-source, and is known
as the Bright Project [1] (Bright reconstruction with light).

The possible applications of the developed method are numerous :

• Museum : keep a digital copy of an art work

• Entertainment : 3-D model creations for video games

• Medicine : 3-D reconstruction of an anatomy

• Engineering : creation of prototypes

• Machine Vision : 3-D model creations for tracking

Chapter 2

Context, background

2.1 The MMVL lab

The Microsystems and Machine Vision Laboratory (MMVL) [2] is a research
group within the Materials and Engineering Research Institute (MERI) at
Sheffield Hallam University, UK.

The main research activities involve the design, development and imple-
mentation of machine vision techniques targeted at a variety of real-time
and non real-time applications which include micro-robotic systems, biolog-
ical applications, micro-manipulation and microscope imaging.

2.2 The MIMAS library

MIMAS [9] was originally conceived as a platform for real-time machine vi-
sion research. Its aim was and still is to reduce the turnaround time of
new research into the application workspace. It is written in C++ and is re-
leased in source code form subject to the GNU Lesser General Public License
(LGPL). Various optimization schemes (POSIX threads) are implemented in
order to achieve the real-time objectives.

MIMAS was used to build a number of vision systems including two
European Union sponsored projects, namely MINIMAN (completed in 2002)
and MiCRoN (completed in 2005). MIMAS is also being used to build a
number of customised vision solutions for academia and industry.

A partial list of algorithms and classes that are part of the vision toolkit
are as follows :

• Localisation of objects using colours

• Variety of tracking methods

8

CHAPTER 2. CONTEXT, BACKGROUND 9

• Comprehensive matrix library with linear algebra algorithms

• Image capture with Video4Linux

• Low-level image processing algorithms

• edge and corner detection

• etc...

Chapter 3

Equipments

3.1 Hardware equipment

Following are the equipments used during the project, that was given to
me at the beginning of the project, or ordered to be built in the university
workshop.

• Desktop computer running Ubuntu GNU/Linux

• Camera : webcam Logitech 8K89 ITE (resolution : 640 ∗ 480)

• Laser line (class 2). Ref : UHL5-20G-650-45.
Power : 20 mW, laser wavelength : 690 nm.

• Mechanical support and holder to hold the camera and laser.

• Rotating platform to rotate the object to be scanned.

3.2 Software

Software used in the development of the vision system include :

• languages:

– C, used by OpenCV [10] and Gandalf [11].

– C++, the object oriented facilities and performance of this lan-
guage make it a good choice.

– Fortran, used by LAPACK and MINPACK libraries.

– Matlab for the camera calibration reference program.

10

CHAPTER 3. EQUIPMENTS 11

– Perl a scripting language, essentially for batch jobs.

– For its documentation quality : LATEX

• libraries:

– Standard Template Library (STL) library

– BOOST [14] portable C++ source libraries, and especially uBLAS
for matrix handling.

– LAPACK [12] and MINPACK [13] for matrix algebra

– MIMAS [9] a vision library which also provides an interface to
access earlier mentioned libraries.

• Compiler sets - GNU compiler collection.

• OpenOffice.org for presentations.

Chapter 4

Work accomplished

This chapter presents the different stages which led to the final project. The
purpose of the chapter is to explain how I managed to find a subject fitting
my needs and abilities, and how I decomposed the work.

4.1 Subject research

My objective since my arrival was to develop a 3-D reconstruction software,
nevertheless no particular method was given.

So my first approach was to collect as much information as I could on
the subject. I read some chapters of an introduction book [3] on machine
vision to understand the subject. I also read some papers about 3-D scanning
methods, as well as papers explaining different methods to reconstruct the
surface of an object with some sample 3-D points.

I also tried some software implementation such as PowerCrust [17] to re-
construct an object with 3-D points. This software implements an algorithm
to get the crust (surface) of an object given 3-D points sampled from its
surface. The tests were conclusive; if the 3-D points are precise enough, the
surface is given accurately.

4.2 Test of different methods

I needed to find a way to scan the 3-D points from the object, knowing
that from these points I could retrieve the 3-D shape with softwares like
PowerCrust.

12

CHAPTER 4. WORK ACCOMPLISHED 13

4.2.1 COPOS

The first solution I found was the one which guided me to the follow-up of
my project.

The COPOS [18] project is a French project, initiated by Ronan Billon,
whose purpose was to create the cheapest 3-D laser scanner possible.

So I decided to build my own scanner following the recommendations of
the website. Dr Bala Amavasai found me a cheap laser line (10 pounds), and
Kim Chuan helped me to adapt an old rotating platform (from an abandoned
project) to one fitting my needs. I installed everything along with the camera
in a large cardboard box to protect from the daylight, and scanned a few
objects.

The COPOS software provided from the scan a set of points, to which
can be applied the Power Crust algorithm to reconstruct the surface.

The program was working reasonably well, but the result was not very
satisfactory. The laser line detection on the object was not good enough
(maybe because the line projected by my laser wasn’t strong enough), and
the global precision was very limited : the COPOS software requires the
user to provide some distances (between the camera and the platform for
instance) which are hard to measure accurately.

This is why I kept the COPOS project in mind while I was going further,
but decided to change some parts of it.

4.2.2 ArcheoViz

I also tried a project name ArcheoViz [19]. This project is very different from
COPOS, because it’s working only with 2 pictures of the object. The method
used is the photogrammetry (in its simplest form, because only using 2 images
are used). The main advantage is that it can handle large object, such as
small monuments (the project was designed for archaeological purposes). The
problem is that the software needs information about the object (location of
a few 3D points) to process other points and reconstruct the shape.

So the software was not suitable for my needs, but it helped me to discover
another way to do 3-D reconstruction.

4.3 Camera calibration

Once I had chosen my method to scan the object, I understood that imple-
menting a camera calibration software was necessary, because it was needed

CHAPTER 4. WORK ACCOMPLISHED 14

for my method, and it was not available in MIMAS, although it was in the
other computer vision libraries (OpenCV [10] and Gandalf [11]). So imple-
menting it was both useful for my project and the follow-up of the MIMAS
library, because it could be used for some other projects.

The implementation of camera calibration was the largest part of my
project, because it took me five months to implement all the steps, from the
algorithm to the GUI (Graphical User Interface).

4.4 3-D reconstruction

Once the camera calibration method was implemented, I could get back
to my 3-D reconstruction project. I had to find a way to make my 3-D
reconstruction more accurate than COPOS.

The COPOS solution requires the user to provide the distances and angles
between the camera, the laser and the platform, which, unless you have an
accurate solution to measure them, is bound to affect the precision.

The basic idea of my solution is to calibrate the rotating platform and
the laser line according to their relative position to the camera, to avoid
imprecise measurement.

To implement the above method I designed a stand which could hold
both the webcam and the laser line, to make sure they are keep at the same
relative position to one another.

This stand was built by the university workshop, and consists of a stem
holding 2 rotating arms, one for the camera, and one for the laser line (see
fig 4.1 page 15).

I also needed a rotating platform, for which Kim Chuan Lim helped me
with the design and fabrication. It is made with up of a stepper motor to
get a good precision on the angle, and a controller to be able to activate the
motor with a computer, using a serial port.

Based on Manuel Boissenin’s idea, I designed a software to calibrate the
laser line (regarding to its relative position to the camera).

Once the laser was calibrated, the next step was to compute the 3-D
points for a single projection of the laser line on an object. The laser line can
be decomposed into points, and then the 3-D position of these points can be
retrieved.

Then, if the rotating platform is calibrated (that is its relative position
to the camera is known), it was possible to do the previous operation several
times by rotating the platform. With the resulting 3-D points with the

CHAPTER 4. WORK ACCOMPLISHED 15

Figure 4.1: The laser and camera stand

corresponding angle of the platform, one can compute a full 3-D scan of the
object.

Part II

Camera Calibration

16

Chapter 5

Introduction

In order to understand the purpose of camera calibration, it will be helpful
to understand how the images are represented by the camera.

A practical model is to consider the camera as a pinhole (cf fig. 5.1)

Figure 5.1: The pinhole camera imaging model

In this model, the camera maps 3D points to a 2D image. This can be
modelled by a 3*4 projection matrix.

It has been proved [3] that the projection of a point in space with ho-
mogeneous coordinates X onto the image plane having the homogeneous
coordinates x satisfy the equation :

17

CHAPTER 5. INTRODUCTION 18

λ

x

y

1

 =

fsx fsθ ox

0 fsy oy

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

R T

0 1

X

Y

Z

1

(5.1)

which can also be written as :

λx = KΠ0gX (5.2)

where

• f is the focal length of the camera

• (sx, sy) is the size of a pixel

• sθ is the skew factor

• (ox, oy) is the optical centre

• K is the intrinsic matrix

• λ is a scalar factor.

• Π0 is the canonical projection matrix.

• g = (R, T) is a transformation composed of a rotation and a translation.

The camera calibration process consists of finding experimentally the ma-
trix K, using some pictures captured by the camera.

Chapter 6

Algorithm

The basic idea of calibration is to take a picture of an object with an ac-
curately known shape, and to use the properties of both the object and the
image captured to compute the intrinsic matrix.

There are quite a lot of different algorithms to do the camera calibration.
Some of them use only one picture, but with a lot of information on the scene
taken. For instance [4] gives an algorithm to calibrate a camera with only
one picture of a chessboard-faced cube. The main difficulty is to construct
accurately this kind of calibration object.

The chosen algorithm is a quite recent one (December 2, 1998) [6], and
one of the most accurate as well. This is the one used by the OpenCV [10]
library, and by the camera calibration program [16] that is probably the most
cited implementation of the algorithm by the community.

The algorithm uses a chessboard to calibrate. The advantage of this
object is that it is simple to fabricate (one may just print a chessboard
pattern and glue it on a plane surface such as a book). The algorithm is
explained in [4] and in details in [6], and an overview of the algorithm is
given in this chapter.

Since the world reference frame can be chosen freely, we choose it aligned
with the chessboard, so that points on it have coordinates of the special form
X = [X, Y, 0, 1]T . The center of the world frame must be on the board, and
the Z-axis of the world frame is the normal vector.

Then the projection equation (5.1) can be simplified to :

λ

x′

y′

1

 = K[r1, r2, T]

X

Y

1

 (6.1)

19

CHAPTER 6. ALGORITHM 20

where r1, r2 ∈ R
3 are the first and the second column of the rotation

matrix R.
Notice that the matrix

H = K[r1, r2, T] ∈ R
3×3 (6.2)

is an homography between the chessboard plane and the image plane.
It’s possible to compute H , if we know at least 4 points in the world refer-
ence frame, and their projections. We can use the 4 extreme corners of the
chessboard for that.

With the 4 corners, a system of equations is defined, which we want to
find an approximated solution using an error-minimising algorithm such as a
least-square function. More corners of the chessboard could be used to refine
the solution, but experience has shown that using only the 4 extreme corners
and all the corners of the chessboard leads to a very close result, so although
the general version with n corners is implemented, the 4 corner version is
used for a faster result. The solution is found using a least-square algorithm
based on the SVD (Singular Values Decomposition) detailed in [4].

From 6.2, we have [h1, h2] ∼ K[r1, r2], which is equivalent to :

K−1[h1, h2] ∼ [r1, r2] (6.3)

Since r1 and r2 are orthonormal vectors, we obtain 2 equations that the
calibration matrix K has to satisfy :

{

hT
1 K−T K−1h2 = 0

hT
1 K−T K−1h1 = hT

2 K−T K−1h2
(6.4)

Using S = K−T K−1 ∈ R
3×3, we can take several images and evaluate

the equations 6.4 for each image. As there are five unknown in K, and each
image provides two equations, a minimum of three images is needed.

A solution of the system can be approximated in the least-square sense,
and then we can retrieve K from S using the Cholesky factorisation.

What we get is just a first approximation of the intrinsic matrix K, be-
cause the previous algorithm doesn’t consider the distortion of the camera
or the noise on the picture.

Zhang explains in [6] how to optimise the result, using the Levenberg-
Marquardt algorithm, and how to introduce the distortion.

The solution is obtained through minimising an algebraic distance which
is not physically meaningful. We can refine it with a maximum likelihood

CHAPTER 6. ALGORITHM 21

algorithm. We are given n images of a model plane and there are m points on
the model plane. If we consider that the noise is independent and identically
distributed, the maximum likelihood estimate can be obtained by minimizing
the following functional:

n
∑

i=1

m
∑

j=1

‖mij − m̃(K, Ri, ti, Mj)‖
2 (6.5)

where m̃(K, Ri, ti, Mj) is the projection of point Mj in image i, and mij

the measured point on the image.
The rotation and translation Ri and ti are the extrinsic parameters of

each image. Those parameters can be approximated for each image using
K and H , and then Ri must be refined to respect the mathematical form a
rotation matrix.

The Levenberg-Marquardt algorithm to work needs a first approximation
of the solution K, which we have computed above. At each iteration, it will
modify slightly the values of K, and try to minimise the sum given by the
equation 6.5.

In the equation 6.6, the distortion of the image is not considered. But
it’s also possible to find the first two parameters (k1 and k2) of the distortion
using the above method, simply by using a first approximation of (k1 and
k2) as 0, and using the parameters in the projection :

n
∑

i=1

m
∑

j=1

‖mij − m̃(A, Ri, ti, Mj, k1, k2)‖
2 (6.6)

This time, the distortion is considered in the projection m̃. In the equa-
tion 6.6, there are 7 unknowns, hence a minimum of four images must be
captured.

More information about the repercussion of k1 and k2 on the projection,
and how to compute the projection taking into consideration k1 and k2 can
be found in Zhang’s paper [6].

Chapter 7

Implementation in MIMAS

7.1 Software design

The software for the camera calibration was done in C++, using as well as
updating the MIMAS library.

The basic idea was to implement classes to do the camera calibration,
independent to some choices (like the GUI, the chessboard size, etc...) and
subsequently to create a GUI in QT4 [15] using the above classes and provide
a full camera calibration tool.

7.2 Presentation of the classes

Figure 7.1: Class diagram

22

CHAPTER 7. IMPLEMENTATION IN MIMAS 23

7.3 Extra functionality added to MIMAS

To implement the calibration algorithm, I needed to use some functions pro-
vided by MIMAS such as matrices, image manipulation, correlation algo-
rithm etc... But MIMAS is not as comprehensive as OpenCV for instance,
so some generic functions were missing. I implemented the following func-
tions, and added them to the library.

7.3.1 Cholesky decomposition

For linear algebra computations, MIMAS provides a convenient set of wrap-
pers functions for the open-source Fortran library LAPACK [12].

The Cholesky decomposition in LAPACK is the function pptrf. There
was not wrap in MIMAS, so a wrapper function was written.

It is now available in the MIMAS library through the function :

template<typename T>

triangular_matrix< T > pptrf(symmetric_matrix< T > const &A);

7.3.2 Determinant of a matrix

As surprising as it may seem, the determinant function was not available
in MIMAS. Since the first version of the calibration algorithm needed it, an
implementation was done, using the LU factorisation which was already in
wrapped in MIMAS from LAPACK.

The determinant is now available in the MIMAS library through the
function :

template<typename T>

double determinant(matrix< T > const &M);

Note : a further improvement of the calibration algorithm allowed to
bypass the use of this function.

7.3.3 Levenberg-Marquardt algorithm

As this algorithm is non-linear, it was not implemented in LAPACK, but is
available in MINPACK [13], which is another Fortran library.

The Levenberg-Marquardt algorithm functions are lmdif (normal ver-
sion) and lmdif1 (version with a simplified calling sequence).

It is now available in the MIMAS library through the following functions
having the same name.

CHAPTER 7. IMPLEMENTATION IN MIMAS 24

lmdif_t::Vector lmdif(const lmdif_t::Vector &A,

void (*fnc)(int *m, int *n, double *x,

double *fvec, int *iflag),

int nb,

int maxfev,

double tolerance = 1e-7,

int mode = 1,

int factor = 1,

double epsfcn = 0);

lmdif1_t::Vector lmdif1(const lmdif1_t::Vector &A,

void (*fnc)(int *m, int *n, double *x,

double *fvec, int *iflag),

int nb,

double tolerance = 1e-7);

The main difficulty faced in implementing these functions it that I had
to start from scratch, because there were no MINPACK wrapper function
in MIMAS. Based on the implementation of the LAPACK wraps, wrapper
functions and classes were provided for MINPACK. The detection of the
MINPACK library is now included in the configuration file of MIMAS.

Chapter 8

The corner detection algorithm

8.1 Introduction

While the calibration algorithm needs to get the corners of a chessboard,
implementing a good corner detection algorithm seemed to be an obvious
condition to make a robust implementation of this algorithm.

In fact, the accuracy of the result of the calibration algorithm depends on
the precision of the location of the corners. That’s why the slightest impre-
cision on the location of the corner gives an imprecision on the calibration
result.

A first approach would have been to let the user himself select the location
of the corners, but the problem is that the human eye can’t be as precise as
the machine to make the choice. Where the eye will only see an area which
seems to contain the corner, an algorithm will be able to choose a precise
point in this area, even with a sub-pixel accuracy.

8.2 Choice of the algorithm

It would have been possible to implement an algorithm which needed no
interaction with the user apart from taking the picture, but this algorithm
would have needed a full scan of the picture to guess the position of the
corners, and a post-treatment to remove unwanted corners. The resulting
algorithm would have been very slow. But one may easily change my program
to implement this algorithm.

That’s why the algorithm I decided to choose needs the user to provide
a first approximation of the four extreme corners of the chessboard, to avoid

25

CHAPTER 8. THE CORNER DETECTION ALGORITHM 26

useless computations, and to be sure there won’t be any mismatch with
another corner of the image.

8.2.1 The template based algorithm

There is an article [7] explaining a corner detection algorithm designed for
chessboard based camera calibration algorithms. I took from this article not
the full method, but only the main idea : using a cross template to detect
the corners.

The cross template is like1 (see fig. 8.1):

Figure 8.1: The black and white template, for the upper-left corner

The centre of the cross will correlate with the corner of the square. Be-
cause of the noise around the corner, the template must be big enough to
correlate accurately. Furthermore, there are actually four templates, one for
each type of corner (left or right, upper or lower)

The previous template is perfectly working on a black and white image,
but when we take a picture of the chessboard, it will appear as an image in

1Remember that black is 0, white is 255, and X can be any color

CHAPTER 8. THE CORNER DETECTION ALGORITHM 27

levels of grey. And with the light, the black is not perfectly black, neither
the white is.

This is why, in the final implementation, the user is requested to click in
a black square and in a white area of the chessboard, to calibrate the corner
detection.

Furthermore, as there is blur on the image taken by the camera, the
template can not be used accurately with only 2 colours.

So I adapted the template to make it correlate with a generated image: a
black square on a grey background, on which I applied a Gaussian blur filter,
so I used this image to extract coefficients to apply on the template.

Finally, the final template is like (see fig. 8.2):

Figure 8.2: The final template, with white = 150 and black = 50

The main advantage of this template is that it can be applied even if the
squares are inclined. Although the paper recommends to avoid angles over
30o, experimentation has shown that the corner can be detected even if the
square is rotated with an angle ranging from −40o to 40o.

The template is applied to all the pixels in a window around the first
approximation (using a correlation based algorithm), and the best correla-

CHAPTER 8. THE CORNER DETECTION ALGORITHM 28

tion found, if superior to a given minimum correlation, gives the best pixel.
Otherwise, the algorithm considers no corner is in the window.

8.2.2 The sub-pixel detection

The limitation of the previous algorithm is it will only find a corner with a
pixel precision. If we want a robust calibration algorithm, we need a better
precision.

Another paper [8] introduces the Blais and Rioux (among other algo-
rithms, but this one - in its fourth order form - was presented as the most
efficient).

In its original form, this algorithm is intended to work with the intensities
of the pixel, and will find the peak intensity point with a sub-pixel precision.

Given a discrete representation of the intensities, the algorithm will be
able to interpolate assuming the shape is parabolic around the peak, and
find it.

Figure 8.3: The Blais and Rioux detector

The algorithm uses the values of the intensities around the detected pixel
to approximate the peak. For instance, in Fig 8.3, the best approximation
of the peak is the point 3, so using the values of the intensities at the points
around, the detector will approximate the peak between 2 and 3.

8.2.3 The final algorithm

I decided to adapt both of the previous algorithms to make my own. The
Blais and Rioux detector is intended to work with the intensity of the pixel,
but I decided to use it with the values of the correlation numbers instead.

First, we need a first approximation of all the corners of the chessboard.
As we have an approximation of the four extreme corners, we can compute the

CHAPTER 8. THE CORNER DETECTION ALGORITHM 29

homography between the chessboard and the image. We also know the size
(in number of squares) of the chessboard pattern, so it is possible using the
homography to compute an approximation of the position of all the corners
of the chessboard.

So for each corner, the algorithm finds the type of the corner (e.g. upper-
left), computes the correlation numbers of all the points in a window around
the approximated point, finds the maximum, and using its neighbors applies
the fourth-order Blais and Rioux detector (BR4) on the X and on the Y

axes.
The algorithm is explained in details in Algorithm 1.

Algorithm 1 Corner detection algorithm

1: Get a first approximation of the corners, and compute the homography.
2: for all corners of the chessboard do

3: Compute an approximation of the corner using the homography.
4: for all pixels in a window around the approximated corner do

5: According to the corner location, find the matching template.
6: Correlate with the corner template.
7: Save the best correlation.
8: end for

9: if the correlation is greater than the minimum required then

10: Save the best corner.
11: else

12: No corner found. Exit.
13: end if

14: Apply the Blais and Rioux detector on the best corner.
15: Save the corner in a matrix.
16: end for

17: return Matrix of the results.

Chapter 9

Tests and validation

9.1 Test of the corner detection algorithm

First estimation of the homography (with a non accurate approximation of
the 4 corners) :

0.399123 −0.0141567 0.488672
0.0310757 0.377969 0.676622

8.06638e− 05 −2.39378e− 05 0.00751802

 (9.1)

Homography found with all the points (80) :

0.403101 −0.00685318 0.465341
0.0318304 0.372436 0.693644

8.20428e− 05 −7.91863e− 06 0.00750119

 (9.2)

Second estimation of the homography, with the accurate 4 corners de-
tected by the corner detection algorithm :

0.403051 −0.00697422 0.46662
0.031288 0.373242 0.692403

8.08968e− 05 −9.34388e− 06 0.00752612

 (9.3)

Conclusion : the homography found with 4 corners is almost the same
than the one found with 80 corners, so to avoid useless calculations, we will
only do the calculation with 4 corners.

9.2 Test of the convergence of the algorithm

I tested my calibration algorithm with a large number of images, to test the
convergence.

30

CHAPTER 9. TESTS AND VALIDATION 31

We can see on the diagrams that the algorithm doesn’t converge very
well, even though I tried with more than enough images (80). The problem
probably comes from the least-square approximation, with is not resistant to
outliers. See the chapter “Possible extensions”for more details.

Nevertheless, the result I get is good enough for my 3-D reconstruction
project, because I just need a good approximation of the calibration matrix,
not a perfect result.

Figure 9.1: The ax parameter

CHAPTER 9. TESTS AND VALIDATION 32

Figure 9.2: The ay parameter

Figure 9.3: The fx parameter

CHAPTER 9. TESTS AND VALIDATION 33

Figure 9.4: The fy parameter

Figure 9.5: The skew parameter

CHAPTER 9. TESTS AND VALIDATION 34

Figure 9.6: The distortion parameters

Part III

3D reconstruction

35

Introduction

Calibrating the camera was a first step to start the 3-D reconstruction, but
it was also the biggest work to be done. We will see that once the camera
is calibrated, using both the calibration result and the source code of the
calibration software leads to a fast way to get the 3-D reconstruction of
objects.

The method presented here requires only a laser line, a camera (we use a
webcam, which is enough), a support for the camera and the laser line and
either a rotating or translating system, to move the object to scan.

This method is more flexible than COPOS [18] as it doesn’t require the
user to provide the relative positions of the laser line and the camera, with
the lack of precision it implies. Once the camera and the laser are fixed, the
relative positions are found by calibration.

36

Chapter 10

Laser calibration

This section explains the method designed to calibrate the laser line with
only two pictures. In the following, calibrating the laser means finding the
equation of the laser plane in a given frame.

10.1 Theory

In this 3-D reconstruction method, we are using a laser line to scan the
object. If the laser is fixed, the laser line defines a plane in the 3-D space.

Laser

Laser plane

Figure 10.1: The laser plane

37

CHAPTER 10. LASER CALIBRATION 38

The equation of this plane is needed. The world reference frame is chosen
to be the camera frame (the frame which centre point is the centre of the
camera, and the z axis is normal to the image plane).

z

y
x

C

Image plane

Figure 10.2: The camera frame

10.2 Overview of the method

In theory, 3 non-collinear points define a plane. Then it is possible to find
the plane equation with those points using them to define 2 vectors, and to
make the cross product in order to get a normal vector to the plane. A point
of this plane and this normal vector define the plane equation.

We use the chessboard we have already been using to calibrate the camera.
The main idea, once the camera and the laser line are both fixed, is to
take 2 pictures of the laser line on the chessboard. Then using the intrinsic
matrix (found when calibrating the camera), and for each picture, finding
the extrinsic matrix lead to the ability to find the equation of the laser line
in the world reference frame.

From those two lines, we will extract 3 non-collinear points, and thus find
the laser equation.

10.3 Detailed description

For each picture, we find the homography using the same technique as for
the calibration : providing the four extreme corners of the chessboard, and
then computing the homography with the same method.

CHAPTER 10. LASER CALIBRATION 39

For the laser line, we use another method. The laser line can be detected
on the chessboard by an appropriate filter. Using the homography the equa-
tion of the line in the chessboard frame can be found, and then using the
extrinsic parameters the equation can be transformed into the camera frame.

The laser line is represented in the image by 2 points. If H is the ho-
mography matrix, X the homogeneous 2-D coordinates of a point in the
chessboard frame, and x the homogeneous 2-D coordinates in pixels in the
image frame, we have :

x = HX

Thus, as H is invertible, we have :

X = H−1x (10.1)

If we note XC the homogeneous 3-D coordinates of a point in the camera
frame and P the extrinsic matrix for homogeneous coordinates :

P =

R T

0 0 0 1

∈ R
4×4

we have the relation :
XC = PX (10.2)

Thus, combining the equations 10.1 and 10.2, we can transform the points
of the laser line in the image frame to the camera frame.

XC = PH−1x (10.3)

To get the equation of the plane, 2 pictures of the laser line on the chess-
board are taken. For these 2 pictures, the homography as well as the extrinsic
parameters is computed (getting the extrinsic parameters is possible, because
we know the camera calibration matrix. The method is explained in Zhang’s
paper [6] and has already been used in the calibration process).

2 points belonging to the laser line are taken from the first picture, and
only 1 from the second pictures. These 3 points u1, u2, u3 belong to the laser
plane, its equation can be derived.

Using 10.3, the coordinates of the 3 points are known in the world refer-
ence frame.

Taking for instance u1 as a point and the cross product (u2−u1)×(u3−u1)
as a normal vector defines the plane.

CHAPTER 10. LASER CALIBRATION 40

10.4 Implementation with MIMAS

10.4.1 Detection of the laser line

The laser line is detected in 2 steps. The first one is to do a threshold. The
laser line is red on the edges, but in its centre, where the intensity is the
highest, the line is white. That’s why a threshold on the high intensities of
the image will provide a set of points belonging to the laser line.

I implemented in MIMAS a threshold function with 2 levels. It is now
available using the functions :

template< typename T >

image< T > bilevel_double(const image< T > &im, T min, T max,

T val1, T val2);

template< typename T >

image< T > &bilevel_doubleIt(image< T > &image, T min, T max,

T val1, T val2);

These functions map the pixel x of image to max if val1 < x < val2, or
to min otherwise.

The second step to find the laser line is to use the Hough transform.
This transformation (well-known in the machine vision community) can, for
a given set of points, identify a line passing in the neighbourhood of the
maximum of these points.

This report won’t develop this transformation, because it was already
implemented in MIMAS.

10.4.2 Equipment

To get an accurate calibration of the laser line (meaning to get the laser
line in a stable position), a stand is needed. There could be many ways of
designing this stand. The one I chose is presented in Fig 4.1 page 15.

It is composed of a stem, and 2 rotating arms. One has a tray to hold the
webcam, the other has a hole to set the laser in. The laser stand can slide
on the arm, in order to reach the object according to its size and position.
The arms can rotate about the stem, and slide up and down before being
tightened to the stem with a screw.

Chapter 11

The 3-D reconstruction

Here is explained the method to get the 3-D line on an object, and to be-
longing to this line.

11.1 Equipment

The stand to hold the camera and the laser line must be used, as well as a
rotating platform.1

Figure 11.1: The full equipment

1The method could probably be adapted to a translating platform

41

CHAPTER 11. THE 3-D RECONSTRUCTION 42

11.2 Method of 3-D reconstruction

As Figure 11.2 shows, the 3-D point can be retrieved from the intersection
between the laser plane and the line going through the camera centre and an
enlighten pixel.

Figure 11.2: The 3-D reconstruction

11.3 Detection of the line and computation

of the 3-D points

Here the line detection is presented as well as the computation of the 3-D
location of the points

11.3.1 Laser line detection

The laser line is projected on the object, and a picture is taken by the cam-
era. The object is placed in a dark environment, and a threshold on high
intensities is used to extract the laser line from the picture.

11.3.2 3-D points computation

The last step is, from the 2-D points of the laser on the object, to compute
their 3-D location.

CHAPTER 11. THE 3-D RECONSTRUCTION 43

From the theory of camera projection, it is known that a 2-D point is the
projection on the image plane of a 3-D point by the ray that goes through
this point and the camera centre.

So if the equation of the ray passing through the camera centre and the
2-D point can be computed, the intersection between the ray and the laser
plane gives the 3-D location of the point.

The equation of the ray can be computed using the following statement:
in the general case, if we note P+ = P T (PP−1)T the pseudo-inverse of P ,
the point P+x will project to the point x by the ray. This is due to the usual
projection equation 11.1 :

x = PX = K[R|T]X (11.1)

where x is the 2-D point in homogeneous coordinates in the image frame,
P the camera projection matrix, and X the 3-D point in homogeneous coor-
dinates in the world reference frame, i.e. the camera frame.

In our case, there is no frame change, so P = K[I3|0]. As K is invertible,
the point K−1x will project to x, because KK−1x = x

Thus, the equation in the world reference frame of the line passing through
the centre of the camera (which is the origin of the frame) and the point x

is given by the vector along the line v(v1, v2, v3), and is the set of points
M(x1, x2, x3) such as :

x1 = kv1

x2 = kv2

x3 = kv3

, k ∈ R (11.2)

If the plane is given by the point P (p1, p2, p3) and its normal vector
n(n1, n2, n3), the intersection of the plane and the line is given by :

k =
n1p1 + n2p2 + n3p3

n1v1 + n2v2 + n3v3
(11.3)

Combining 11.2 and 11.3, we find the 3-D point coordinates.

11.4 Utilisation of the rotating platform

With the rotating platform, we can scan the whole object using the previous
method on several pictures of the object, rotated each time.

CHAPTER 11. THE 3-D RECONSTRUCTION 44

11.4.1 Platform calibration

The platform needs to be calibrated, as well as the camera and the laser. In
this case, as the platform is intended to rotate the object, the axis of rotation
must be know. So the purpose of the platform calibration is to find the axis
equation in the world reference frame.

The platform calibration can be done with only one picture, using a
special calibration object : a folded chessboard. This chessboard defines 2
planes, and if the chessboard is put on the platform such as the intersection
of the 2 planes and the platform axis match, it is possible to compute the
axis by computing the planes’ intersection.

The computation of the axis is quite straightforward, because the planes
equations can be computed with the homographies and the extrinsic param-
eters for each plane (meaning that the 4 extreme corners of the chessboards
must be computed, such as for the camera calibration).

Let’s A(a1, a2, a3) be the point and u(u1, u2, u3) the normal vector defining
the plane P1, and B(b1, b2, b3) and v(v1, v2, v3) defining the plane P2.

A vector along the line L, intersection of P1 and P2, is given by u × v,
and a point can be found by solving the equations :

{

u1(x− a1) + u2(y − a2) + u3(z − a3) = 0
v1(x− b1) + v2(y − b2) + v3(z − b3) = 0

Also, the axis of the platform is vertical, so there is a point of the line
such as y = 0. To find this point, the equations are :

{

u1(x− a1) + u3(z − a3) = 0
v1(x− b1) + v3(z − b3) = 0

(11.4)

The solution of the equations 11.4 is :
{

x = v1(u1a1+u3a3)−u1(v1b1+v3b3)
v1u3−u1v3

z = v3(u1a1+u3a3)−u3(v1b1+v3b3)
u1v3−v1u3

11.4.2 Rotation formula

When the platform is calibrated, the rotation axis is known. The actual
rotation can be computed using the Rodrigues’s rotation formula. This for-
mula, in its matrix form, provides a rotation matrix around an unit vector
w(wx, wy, wz) of angle θ.

R =

R(1, 1) R(1, 2) R(1, 3)
R(2, 1) R(2, 2) R(2, 3)
R(3, 1) R(3, 2) R(3, 3)

CHAPTER 11. THE 3-D RECONSTRUCTION 45

with :

R(1, 1) = cos(θ) + w2
x(1− cos(θ))

R(1, 2) = wxwy(1− cos(θ))− wzsin(θ)
R(1, 3) = wysin(θ) + wxwz(1− cos(θ))
R(2, 1) = wzsin(θ) + wxwy(1− cos(θ))

R(2, 2) = cos(θ) + w2
y(1− cos(θ))

R(2, 3) = −wxsin(θ) + wywz(1− cos(θ))
R(3, 1) = −wysin(θ) + wxwz(1− cos(θ))
R(3, 2) = wxsin(θ) + wywz(1− cos(θ))

R(3, 3) = cos(θ) + w2
z(1− cos(θ))

The Rodrigues’s formula was implemented, and added to MIMAS’s alge-
bra module :

template< typename T >

boost::numeric::ublas::vector< T > rodrigues

(boost::numeric::ublas::vector< T > const &u,

boost::numeric::ublas::vector< T > const &v,

double theta);

The previous function does the rotation of the vector v of angle θ around
the unit vector u.

11.4.3 The 3-D reconstruction

Once everything above is implemented, the 3-D reconstruction is straightfor-
ward. The last thing needed, although it’s not compulsory is an automated
system to rotate the platform.

In my project, Kim Chuan Lim designed me a rotating platform using
a stepper motor, which can be controlled by the serial port. Knowing the
number of steps to make the motor do a full turn of the platform, a program
to make the platform rotate of a given angle can be written.

The algorithm is explained in details in Algorithm 2.
In this algorithm, the function get2Dpoints() will find the laser line and

extract 2-D points, the function reconstruction() will compute the 3-D points
from the 2-D points for a line, and the function rodrigues() will apply the
Rodrigues’ rotation formula on a set of points.

Moreover, before applying the Rodrigues’ equation, the points will be
translated in a frame which centre is the point we know of the axis of the
platform, because the rotation formula can only be applied if the axis goes
though the centre of the frame. After the rotation is done, the points are
translated back to its original frame.

CHAPTER 11. THE 3-D RECONSTRUCTION 46

Algorithm 2 3-D reconstruction algorithm

Require: step ∈]0, 360]
1: θ ← 0
2: 3Dpoints← ∅
3: while θ < 360 do

4: image← getImageFromCamera()
5: line← get2Dpoints(image)
6: 3Dpoints← 3Dpoints + rodrigues(reconstruction(line), θ)
7: rotateP latform(step)
8: θ ← θ + step

9: end while

10: return 3Dpoints

Chapter 12

Possible extensions

My project of 3-D reconstruction started almost from scratch, and I spent a
lot of time on the calibration algorithm. So the final result is not as accurate
as it could be.

This is why this section will present some ideas to improve the project. It
is targeted as a start point to the next person who wants to go further in this
project. The idea would be to make all the steps of the 3-D reconstruction
as accurate as the camera calibration.

12.1 Camera calibration

Using robust statistic algorithms, it would be possible to improve the calibra-
tion with for instance a RANSAC (RANdom SAmple Consensus) algorithm
to get the homographies (using all the corners of the chessboard) in that
case, to remove the outliers.

And to make the calibration process converge, it would also be possible to
use instead of a least-square algorithm a robuster estimator to outliers, such
as the least median of squares and the least trimmed squares algorithms.
(see [20] for information about robust estimators).

Another idea would be to make the corner detection fully automatic.
As it is a difficult problem to find the chessboard corners in the general
case without any information on their positions, we can simplify it by, for
instance, adding a red line surrounding the chessboard, which would be easy
to find with a colour filter, and look for the corners in the surface defined by
the line.

47

CHAPTER 12. POSSIBLE EXTENSIONS 48

12.2 3-D reconstruction

The laser calibration could be much more improved, because I use only 2
pictures to calibrate it. It must be possible to find an optimised algorithm
(using for instance a least-squares algorithm) working with more pictures
of the laser on the chessboard. Furthermore, the line detection could be
improved as well, because for the moment it doesn’t find all the time the
accurate middle of the line.

Another point which must be improved is the laser detection on the ob-
ject. For the moment the algorithm is very basic, it makes do with a simple
average of the bright points, taken line by line. So it is not really precise,
and doesn’t work if there are 2 points on the same line.

A way of going round this problem would be to compute the connex set of
the bright points, and to do the average for each connex part (the algorithm
“Connected Component Analysis” is already implemented in MIMAS).

We should also be able to cope with different lightning conditions, and
to proceed even if the object is not in a dark environment. A circle polariser
or a red filter may help in that direction.

Part IV

Appendix

49

Bibliography

[1] The Bright project
http://vision.eng.shu.ac.uk:8080/3DReconstruction

[2] The MMVL laboratory
http://www.shu.ac.uk/mmvl/index.html

Books

[3] Machine Vision. Ramesh Jain, Rangachar Kasturi, Brian G. Schunck
ISBN: 0-07-113407-7

[4] An invitation to 3-D vision. From images to geometric models. Yi Ma,
Stefano Soatto, Jana Koseck, S. Shankar Sastry. Springer Editions.
ISBN: 0-387-00893-4

[5] Multiple View Geometry in computer vision. Richard Hartley and An-
drew Zisserman. Cambridge Editions. ISBN: 0521-54051-8

Articles

[6] A Flexible New Technique for Camera Calibration, by Zhengyou Zhang
(December 2, 1998).
http://research.microsoft.com/~zhang/calib

[7] A novel corner detection algorithm for camera calibration and calibra-
tion facilities. Theodore Pachidis, John Lygouras, Vasilios Petridis.
http://users.otenet.gr/~pated/publicgr.htm

[8] A comparison of algorithms for sub-pixel peak detection. R. B. Fisher,
D. K. Naidu.
http://citeseer.ist.psu.edu/fisher96comparison.html

50

BIBLIOGRAPHY 51

Libraries

[9] The MIMAS library
http://www.shu.ac.uk/mmvl/mimas

[10] The OpenCV library
http://www.intel.com/technology/computing/opencv

[11] The Gandalf library
http://gandalf-library.sourceforge.net

[12] The LAPACK library
http://www.netlib.org/lapack

[13] The MINPACK library
http://www.cisl.ucar.edu/softlib/MINPACK.html

[14] The BOOST library
http://www.boost.org

[15] The QT4 library
http://www.trolltech.com/products/qt

Softwares

[16] A camera calibration toolbox for matlab, Jean-Yves Bouguet.
http://www.vision.caltech.edu/bouguetj/calib_doc

[17] Power Crust, Unions of Balls, and the Medial Axis Transform
http://www.cs.utexas.edu/users/amenta/powercrust

[18] COPOS : Cloud Of Points Of a Scanner. (in French)
http://copos.berlios.de

[19] ArcheoViz Stereoscopy system
http://www.cis.upenn.edu/archeoviz

Others

[20] Robust regression algorithms
http://en.wikipedia.org/wiki/Robust_regression

